A Complex containing Two Side-on (μ_2, η^2-As_2) Ligands. The Synthesis and Structural Characterization of $[(\eta^5-MeC_5H_4)Mo(CO)]_2(\mu_2, \eta^2-As_2)_2$

Anthony-Joseph DiMaio and Arnold L. Rheingold*

Chemistry Department, University of Delaware, Newark, Delaware 19716, U.S.A.

The thermolytic reaction of cyclo-(MeAs)₅ and $[(\eta^5-MeC_5H_4)Mo(CO)_3]_2$ produces the first structurally characterized example of a $[cpMo(CO)]_2(E_2)_2$ complex (cp = cyclopentadienyl; E = P, As, or \equiv CR), $[(\eta^5-MeC_5H_4)Mo(CO)]_2^-$ (μ_2,η^2-As_2)₂, which contains extremely short As–As bonds of 2.279(2) and 2.300(2) Å and an Mo–Mo bond of 2.950(1) Å; the two, four-electron donating As₂ ligands are bonded side-on to form a plane perpendicular to the Mo–Mo bond and the two CO and two ($\eta^5-MeC_5H_4$) groups are *cis*.

The heavier group-15 elements (P to Bi), 15-electron metal fragments [*e.g.*, cpMo(CO)₂(cp = cyclopentadienyl) and Co(CO)₃], and methyne (\equiv CR) readily intermingle in cluster formation by isolobal replacement. The As₂ group, an analogue of N₂ and (CR)₂, proved particularly versatile in its ability to form tetrahedrane analogues, *e.g.*, [cpMo-(CO)₂]₂As₂^{1,2} and [Co(CO)₃]₂As₂.^{3,4} The As₂ ligand can be a four, six, or eight electron donor depending on whether the ligand links two, three, or four metal centres.^{2,5,6}

We have shown that, by varying the conditions for thermolysis reactions of $[cpMo(CO)_3]_2$ and the cyclopolyarsines cyclo- $(RAs)_n$ (R = Ph, n = 6; R = Me, n = 5), $[cpMo(CO)_2](\mu_2,\eta^2-As_2)^1$ and $[cpMo]_2(\mu_2,\eta^4-As_5)^7$ may be formed. The intermediate composition $[cpMo(CO)]_2(\mu_2,\eta^2-As_2)_2$ seemed logical but had eluded our isolation; the isoelectronic diacetylene complex $[cpCr(CO)]_2(\mu_2,\eta^2-P_2)_2$ has also proved elusive.⁸ $[(\eta^5-C_5Me_5)Mo(CO)]_2(\mu_2,\eta^2-P_2)_2$

Figure 1. Molecular structure and labelling scheme for (1). Mo(1)-Mo(2), 2.950(1); av. Mo-As, 2.626(1); As(1)-As(2), 2.300(2); As(3)-As(4), 2.279(2); As(2) \cdots As(3), 3.051(2) Å.

Figure 2. A view of (1) along the Mo–Mo vector with $(\eta^{5}-MeC_{5}H_{4})$ rings deleted.

has been spectroscopically identified as a precursor to $[(\eta^5-C_5Me_5)Mo]_2(\mu_2,\eta^6-P_6).^9$

We now report the synthesis and crystallographic characterization of $[(\eta^5-MeC_5H_4)Mo(CO)]_2(\mu_2,\eta^2-As_2)_2$ (1). Complex (1) is isolated in low yield (14%) from $[(\eta^5-MeC_5H_4)Mo(CO)_3]_2$ (1.93 mmol) and cyclo-(MeAs)_5 (2.89 mmol) in 10 ml of toluene (130 °C, 48 h) in a sealed Carius tube (caution: pressures may exceed 30 atm). The filtrate from the cooled reaction mixture was evaporated to dryness, redissolved in CH₂Cl₂, eluted from an alumina column with 5% CH₂Cl₂ in hexane, and recrystallized from CH₂Cl₂-pentane to give deep red, air stable needles.[†]

The molecular structure of (1) as determined by X-ray crystallography[‡] is shown in Figures 1 and 2. The two (μ_2,η^2-As_2) ligands form a plane (max. dev. 0.007 Å) perpendicular to the Mo-Mo vector. The As₂ groups are tilted away from the *cis* carbonyl groups and are not mutually parallel; extensions of the As-As vectors intersect at a 28.5(1)° angle. The (η^5 -MeC₅H₄) rings are also tilted away from the carbonyl groups; each forms a 15(1)° angle to the central As₄ plane. The As₂ ligands have As-As distances [As(1)-As(2) 2.300(2) and As(3)-As(4) 2.279(2) Å] among the shortest known. These may be compared with As-As distances of

 \dagger Satisfactory microanalysis data (C, H \pm 0.3% of calculated values) were obtained for (1). ¹H N.m.r. (250 MHz, CDCl₃): δ 1.58 (3H, s), 1.95 (3H, s), 4.82, 4.89 (8H, doublet of triplets). I.r. (CH₂Cl₂) ν_{CO} 1970, 1930, and 1895 cm⁻¹. M.p. 163—165 °C (decomp.).

 \ddagger Crystal data (23 °C) for (1): triclinic, space group $P\overline{1}$, a = 7.387(2), b= 10.762(3), c = 11.941 Å, $\alpha = 103.57(2)$, $\beta = 92.11(2)$, $\gamma = 10.762(3)$ 101.83(2)°, U = 899.6(4) Å³, Z = 2, $D_{calc} = 2.694$ g cm⁻³, μ (Mo- K_{α}) = 90.8 cm⁻¹. A Nicolet R3m/ μ diffractometer was used to collect 4345 data ($4^{\circ} \le 2\theta \le 55^{\circ}$) of which 4175 were independent ($R_{int.} = 0.77\%$) and 2940 with $F_{o} \ge 3\sigma(F_{o})$ were considered observed. The intensity data were corrected for absorption (T_{max} : $T_{\text{min.}} = 0.457 : 0.222$). The structure was solved by direct methods. All non-hydrogen atoms were refined with anisotropic thermal parameters, and hydrogen atoms were treated as idealized isotropic contributions; the methyl rotational orientations were obtained from one reliably located H atom in each group. At convergence R = 5.43%, $R_w = 6.40\%$, G.O.F. = 1.546, $\Delta/\sigma = 0.010$, $\Delta(\rho) = 1.80$ e Å⁻³ [0.74 Å from C(12) indicating possible unresolved (η^{5} -MeC₅H₄) ring disorder; next highest peak 0.74 e Å⁻³]. $N_o/N_v = 15.4$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

2.273(3) Å in $Co_2(CO)_5[P(C_6H_5)_3]As$ (the shortest known),⁴ 2.279(4) Å in $[W(CO)_5]_3As_2,^6$ and 2.311(3) Å in $[cpMo-(CO)_2]_2As_2$ (2).¹ As seen in (2), and in $[cp(CO)_2Mo]_2As_2-[Cr(CO)_5]_2,^2$ the Mo-As distances at each end of the As₂ ligand are significantly inequivalent; in (1) the Mo bonds to As(2) and As(3) average 2.590 Å while those to As(1) and As(4) average 2.662 Å. The frequency of this observation and the close similarity in the Mo-As distances among these three structures suggest an electronic rather than steric origin for these differences.

In the related d⁴–d⁴ complexes $[cpNb(CO)]_2(C_2R_2)_2$ (3), R = Ph¹⁰ or CO₂Me,¹¹ which have a proposed Nb=Nb bond, the acetylene molecules are twisted by about 10° from a perpendicular projection on the metal-metal vector. This is attributed to a second-order Jahn–Teller effect.¹² In (1), however, this effect is absent, with a projection angle of 90(1)° for either As₂ ligand on the Mo–Mo vector.

$$[(\eta^{5}-MeC_{5}H_{4})Mo(CO)]_{2}(\mu_{2},\eta^{2}-As_{2})_{2}$$
(1)
$$[cpMo(CO)_{2}]_{2}As_{2}$$
(2)
$$[cpNb(CO)]_{2}(C_{2}R_{2})_{2}$$
(3) R = Ph or CO₂Me

If the M.O. diagram for $[(CO)_4NbNb(CO)_4]^{2+}$, constructed as a model for (3),¹² is also applicable to (1), the two additional electrons in (1) [compared with (3)] occupy an Mo–Mo antibonding level in this d⁵–d⁵ complex. The Mo–Mo distance observed, 2.950(1) Å is, however, shorter than in (2) [av. 3.039(2) Å, for two independent molecules].¹ Conventional electron counting methods assign an Mo–Mo bond order of one to (1), assuming that the (μ_2,η^2 -As₂) ligand is a four-electron donor.

Huttner² and Scherer⁵ (and their coworkers) have shown that co-ordinated P_2 and As_2 ligands may increase their donor generosity from four to six or eight by co-ordination to 16-electron metal-carbonyl fragments such as $Cr(CO)_5$ and $cpMn(CO)_2$ and we are investigating this reactivity for (1).

Received, 30th October 1986; Com. 1548

References

- 1 P. J. Sullivan and A. L. Rheingold, Organometallics, 1985, 1, 1547.
- 2 G. Huttner, B. Sigwarth, O. Scheidsteger, L. Zsolnai, and O. Orama, *Organometallics*, 1985, **4**, 326.
- 3 A. S. Foust, M. S. Foster, and L. F. Dahl, J. Am. Chem. Soc., 1969, 91, 5633.
- 4 A. S. Foust, C. F. Campana, J. D. Sinclair, and L. F. Dahl, *Inorg. Chem.*, 1979, 18, 3047.
- 5 O. J. Scherer, Angew. Chem., Int. Ed. Engl., 1985, 24, 924.
- 6 L. Zsolnai, H. Berke, and G. Huttner, J. Organomet. Chem., 1982, 226, C5.
- 7 A. L. Rheingold, M. J. Foley, and P. J. Sullivan, J. Am. Chem. Soc., 1982, 104, 4727.
- 8 S. A. R. Knox, R. F. D. Stansfield, F. G. A. Stone, M. J. Winter, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 173.
- 9 O. J. Scherer, H. Sitzmann, and G. Wolmershauser, Angew. Chem., Int. Ed. Engl., 1985, 24, 351.
- 10 A. I. Guzev and Yu. T. Struchkov, J. Struct. Chem. USSR (Engl. Transl.), 1969, 10, 97.
- 11 A. I. Guzev, N. I. Kirillova, and Yu. T. Struchkov, J. Struct. Chem. USSR (Engl. Transl.), 1970, 11, 54.
- 12 D. M. Hoffman, R. Hoffmann, and C. R. Fisel, J. Am. Chem. Soc., 1982, 104, 3858.